If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-10x=79
We move all terms to the left:
x^2-10x-(79)=0
a = 1; b = -10; c = -79;
Δ = b2-4ac
Δ = -102-4·1·(-79)
Δ = 416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{416}=\sqrt{16*26}=\sqrt{16}*\sqrt{26}=4\sqrt{26}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-4\sqrt{26}}{2*1}=\frac{10-4\sqrt{26}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+4\sqrt{26}}{2*1}=\frac{10+4\sqrt{26}}{2} $
| -5x-4(-4x+21)=-161 | | t+7/3=8 | | -5x-4(-4x+21=-161 | | 4.9x^2=500 | | 2x+8=4(2x+2 | | 2x+8=4(2x+2) | | 5n+1=5+1-8n+8n | | 2x+3(x-5)=x+13 | | 5-(3x+18)=9x-1 | | 2/3m+1/3m=-3 | | -6p-38=2p+10 | | -5(2x-3)+4x=3(x+9) | | -3=5(y-5)+6y | | 3(w-8)=8w+21 | | 4=7(x-8)+8x | | 6x+4=12x-6x | | 4=-6v+8(v+3) | | 3(2x-7)=2(x-8) | | x+26+2x-20=180 | | 4(5x-7)=7-4(-5x+7) | | 2-8x=14-4x | | 0=-16t^2+94 | | 7(x+2)=3x+10 | | 9x+2=-x-18 | | 4x-1+2x=10x-9 | | 47=-16t^2+94 | | 6y-41-10=180 | | (4)=3x-7 | | -3/x=-6/3x+7 | | (9)=2x-3 | | 9+2(2x-1)=1 | | 3(x-12=27 |